Project Title	Funding	Institution	
Roles of Oxytocin and Vasopressin in Brain	\$1,947,833	National Institutes of Health	
Effects of Chronic Intranasal Oxytocin	\$1,103,903	University of California, Davis	
Regulation of Neuroligins and Effects on Synapse Number and Function	\$759,674	National Institutes of Health	
Prefrontal function in the Shank3-deficient rat: A first rat model for ASD	\$544,401	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Identifying therapeutic targets for autism using Shank3-deficient mice	\$486,501	ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI	
Characterization of the Schizophrenia-associated 3q29 Deletion in Mouse	\$477,402	Emory University	
Functional analysis of the Schizophrenia and Autism Spectrum Disorder gene TCF4 i	\$457,500	LIEBER INSTITUTE, INC.	
Oxytocin Receptors and Social Behavior	\$440,363	Emory University	
Mechanisms of circuit failure and treatments in patient-derived neurons in autism	\$406,250	BROWN UNIVERSITY	
Striatal synaptic Abnormalities in Models of Autism	\$397,500	UT SOUTHWESTERN MEDICAL CENTER	
Preclinical evaluation of NMDA receptor antagonists for treating Rett Syndrome	\$396,250	CASE WESTERN RESERVE UNIVERSITY	
THE GENETIC AND NEUROANATOMICAL ORIGIN OF SOCIAL BEHAVIOR	\$391,250	BAYLOR COLLEGE OF MEDICINE	
Neurobiological Signatures of Social Dysfunction and Repetitive Behavior	\$390,000	Vanderbilt University	
Preclinical Autism Consortium for Therapeutics (PACT)	\$389,677	University of California, Davis	
Mechanisms of stress-enhanced aversive conditioning	\$381,250	NORTHWESTERN UNIVERSITY	
Casein Kinase 1 Inhibitors for Treatment of Autism	\$349,610	INTRA-CELLULAR THERAPIES, INC.	
Novel Genetic Models of Autism	\$328,415	UT SOUTHWESTERN MEDICAL CENTER	
Preclinical Autism Consortium for Therapeutics (PACT)- Boston Children's Hospital	\$316,301	Boston Children's Hospital	
Linking cortical circuit dysfunction and abnormal behavior in genetic mouse models of autism	\$258,358	University of California, Los Angeles	
Animal Model of Speech Sound Processing in Autism	\$251,777	UNIVERSITY OF TEXAS DALLAS	
Understanding copy number variants associated with autism	\$250,000	Duke University	
Modeling The Serotonin Contribution to Autism Spectrum Disorders	\$229,702	Vanderbilt University	
A NOVEL TRANSLATIONAL MODEL OF AUTISUM SPECTRUM DISORDER	\$223,125	Emory University	
PsychoGenics Inc.	\$218,567	PsychoGenics Inc.	
Deep Phenotyping of Autism Spectrum Disorder Mice	\$216,994	Harvard University	
16p11.2: Defining the gene(s) responsible (grant 1)	\$210,240	Cold Spring Harbor Laboratory	
16p11.2 deletion mice: Autism-relevant phenotypes and treatment discovery	\$200,000	Stanford University	
16p11.2 deletion mice: autism-relevant phenotypes and treatment discovery	\$200,000	University of California, Davis	
A novel neural circuit analysis paradigm to model autism in mice	\$196,667	Duke University	
Optical imaging of circuit dynamics in autism models in virtual reality	\$184,781	Harvard Medical School	
Dissecting striatal circuit dynamics during repetitive behaviors in autism	\$182,254	FundaÁ,,o D. Anna de Sommer Champalimaud e Dr. Carlos Montez Champalimaud	

Project Title	Funding	Institution	
Characterization of brain and behavior in 7q11.23 duplication syndrome- Core	\$164,326	University of Toronto	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 2	\$159,168	University of California, Los Angeles	
Studies of genetic and metabolic disorders, autism and premature aging	\$157,328	National Institutes of Health	
Role of Caspr2 (CNTNAP2) in brain circuits - Project 1	\$154,145	King's College London	
Novel approaches to enhance social cognition by stimulating central oxytocin release	\$149,665	Emory University	
Functional Analysis of Rare Variants in Genes Associated with Autism	\$146,625	Yale University	
Reversing BDNF Impairments in Rett Mice with TRPC Channel Activators	\$142,398	UNIVERSITY OF ALABAMA AT BIRMINGHAM	
Effects of Chronic Intranasal Oxytocin	\$125,448	University of California, Davis	
The role of PTCHD1 in thalamic reticular nucleus function and ASD	\$125,000	Massachusetts Institute of Technology	
Molecular consequences of strong effect ASD mutations including 16p11.2	\$125,000	Massachusetts General Hospital	
Chromatin remodeling in autism	\$125,000	Stanford University	
Understanding brain disorders related to the 15q11.2 chromosomal region	\$125,000	Johns Hopkins University	
The role of glutamate receptor intereacting proteins in autism	\$125,000	Johns Hopkins University	
Synaptic pathophysiology of 16p11.2 model mice	\$125,000	Massachusetts Institute of Technology	
Biomarker discovery for low sociability: A monkey model	\$125,000	Stanford University	
Neuroligin function in the prefrontal cortex and autism pathogenesis	\$125,000	Stanford University	
Neural mechanisms of social reward in mouse models of autism	\$124,997	Stanford University	
Disruption of Cortical Projection Neurons, Circuits, and Cognition in ASD	\$120,953	The George Washington University	
Safety, Efficacy and Basis of Oxytocin and Brain Stimulation Therapy in ASD	\$114,583	University of Pennsylvania	
A mouse model of top-down interactions	\$100,000	Rockefeller University	
Characterization of brain and behavior in 7q11.23 duplication syndrome- Project 1	\$90,696	University of California, Davis	
Role of Caspr2 (CNTNAP2) in brain circuits- Core	\$89,999	Weizmann Institute of Science	
A novel window into ASD through genetic targeting of striosomes - Core	\$83,764	Massachusetts Institute of Technology	
A novel window into ASD through genetic targeting of striosomes - Project 1	\$82,473	Cold Spring Harbor Laboratory	
Stable Zebrafish Models of Autism Spectrum Disorder	\$75,250	University of Miami	
The Role of Cation/Proton Exchanger NHE9 in Autism	\$62,500	University of California, San Francisco	
How do autism-related mutations affect basal ganglia function?	\$62,500	University of California, Berkeley	
Analysis of oxytocin function in brain circuits processing social cues	\$62,500	Harvard University	
Microcircuit endophenotypes for autism	\$62,500	University of California, San Francisco	
CHD8 and beta-catenin signaling in autism	\$62,500	University of Chicago	
In vivo approach to screen ASD allele functions in cortical interneurons	\$62,500	University of California, San Francisco	

Project Title	Funding	Institution	
A zebrafish model to identify epigenetic mechanisms relevant to autism	\$60,000	King's College London	
The tissue-specific transcriptome anatomy of 16p11.2 microdeletion syndrome	\$60,000	Massachusetts General Hospital	
Deep Brain Stimulation for Autistic Self-Injurious Behavior	\$60,000	Johns Hopkins University	
Investigating Wnt signaling variants in mouse models of ASD	\$60,000	University of California, San Francisco	
Circuit-level developmental and functional dynamics in an ASD genetic model	\$60,000	Univeristy of Queensland	
Rapid drug discovery in genetic models of autism	\$59,834	Research Center of Centre hospitalier de l'UniversitÈ de MontrÈal	
Role of the CUL3-mediated ubiquitination pathway in autism	\$59,340	Portland State University	
Comprehensive Phenotyping of Autism Mouse Models	\$58,713	University of Pennsylvania	
Vicarious Neural Activity, Genetic Differences and Social Fear Learning	\$56,978	Oregon Health & Science University	
Functional connectivity in monogenic mouse models of autism	\$55,260	Fondazione Istituto Italiano di Tecnologia	
Functional consequences of disrupted MET signaling	\$48,509	Children's Hospital Los Angeles	
Behavioral evaluation of a novel autism mouse model	\$30,000	Shriners Hospitals for Children - Northern California	
Pinpointing Genes Underlying Autism in Chromosomal Region 16p11.2	\$30,000	Cold Spring Harbor Laboratory	
Endocannabanoid Enhancement of Sociability in Autism-related Mouse Models	\$25,000	University of California, Irvine	
nvestigations of a Proposed Molecular Feedback Loop in Cortical Neurons n Psychiatric Pathogenesis	\$25,000	University of California, San Francisco	
Characterization of synaptic and neural circuitry dysfunction underlying ASD-like behaviors using a novel genetic mouse model	\$15,000	Duke University	
Neural and cognitive mechanisms of autism	\$0	Massachusetts Institute of Technology	
Rebuilding Inhibition in the Autistic Brain	\$0	Brandeis University	
Examination of the mGluR-mTOR pathway for the identification of potential herapeutic targets to treat fragile X	\$0	University of Pennsylvania	
Novel therapeutic targets to treat social behavior deficits in autism and related disorders	\$0	University of Texas Health Science Center, San Antonio	
Preclinical testing of novel oxytocin receptor activators in models of autism otherotypes	\$0	University of North Carolina	
Preclinical testing of novel oxytocin receptor activators in models of autism obenotypes	\$0	University of North Carolina	
Preclinical testing of novel oxytocin receptor activators in models of autism phenotypes	\$0	University of North Carolina	
Mechanism and treatment of ASD related behavior in the Cntnap2 knockout nouse model	\$0	University of California, Los Angeles	
Femporally controlled genetic rescue of Shank3 autism model	\$0	University of Texas Southwestern Medical Center	
Rat knockout models of ASD	\$0	Baylor College of Medicine	

Project Title	Funding	Institution	
Identifying high-impact therapeutic targets for autism spectrum disorders using rat models	\$0	Mount Sinai School of Medicine	
Effects of oxytocin receptor agonists in mouse models of autism spectrum disorder phenotypes	\$0	University of North Carolina	
Integrative system biology of iPSC-induced neurons for identifying novel drug targets	\$0	Baylor College of Medicine	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	Salk Institute for Biological Studies	
Preclinical therapeutic target validation of glutamate receptors in Shank3 models of autism	\$0	University of Texas Southwestern Medical Center	
Evaluating hyperserotonemia as a biomarker of sensory dysfunction in autism spectrum disorder	\$0	Vanderbilt University	
Testing brain overgrowth and synaptic models of autism using NPCs and neurons from patient-derived iPS cells	\$0	University of California, San Francisco	
Deficits in tonic inhibition and the pathology of autism spectrum disorders	\$0	Tufts University	
Cerebellar signaling in mouse models of autism	\$0	NORTHWESTERN UNIVERSITY	
Misregulation of microtubule dynamics in Autism	\$0	Drexel University	
Exploring VIPR2 microduplication linkages to autism in a mouse model	\$0	University of California, Los Angeles	
Investigating the effects of chromosome 22q11.2 deletions	\$0	Columbia University	
Small-molecule compounds for treating autism spectrum disorders	\$0	University of North Carolina	
Autism-linked TBR1 gene in learning-related synaptic plasticity	\$0	Columbia University	